Skip to content

bipartite-ish

Consider an β€œalmost-bipartite” graph: take nn nodes, partition them into two groups with sizes kk and nβˆ’kn-k respectively; within each group assign each edge the minimum weight mm; assign edges between the two groups any remaining weight (so as to satisfy stochasticity). The trust matrix for this network looks like this:

T=[[m]kΓ—k⋆⋆[m](nβˆ’k)Γ—(nβˆ’k)]. T = \begin{bmatrix} [m]_{kΓ—k} & ⋆ \\ ⋆ & [m]_{(n-k)Γ—(n-k)} \end{bmatrix}.

In other words,

xiβ€²={mβˆ‘j=1kxj+βˆ‘j=k+1ntijxjj∈{1,…,k}βˆ‘j=1ktijxj+mβˆ‘j=k+1nxjj∈{k+1,…,n}. xα΅’' = \begin{cases} m βˆ‘β±Όβ‚Œβ‚α΅ xβ±Ό + βˆ‘β±Όβ‚Œβ‚–β‚Šβ‚βΏ tα΅’β±Ό xβ±Ό & j∈\{1,…,k\} \\ βˆ‘β±Όβ‚Œβ‚α΅ tα΅’β±Ό xβ±Ό + m βˆ‘β±Όβ‚Œβ‚–β‚Šβ‚βΏ xβ±Ό & j∈\{k+1,…,n\} \end{cases}.

Start with everyone in the first group having opinion 11 and everyone in the second group having opinion 00. Observe by induction then that at each step each group shares the same opinion, so let A=x1=β‹―=xkA=x₁=β‹―=xβ‚– and B=xk+1=β‹―=xnB=xβ‚–β‚Šβ‚=β‹―=xβ‚™, evolving according to

Aβ€²=mkA+(1βˆ’mk)B,Bβ€²=[1βˆ’m(nβˆ’k)]A+m(nβˆ’k)B. \begin{aligned} A' &= mk A + (1-mk) B, \\ B' &= [1-m(n-k)] A + m(n-k) B. \end{aligned}

Then note that

Aβ€²βˆ’Bβ€²=βˆ’(1βˆ’mn)(Aβˆ’B),Aβ€²βˆ’A=βˆ’(1βˆ’mk)(Aβˆ’B),Bβ€²βˆ’B=βˆ’(1βˆ’m(nβˆ’k))(Aβˆ’B), \begin{aligned} A'-B' &= -(1-mn)(A-B), \\ A'-A &= -(1-mk)(A-B), \\ B'-B &= -(1-m(n-k))(A-B), \end{aligned}

so then

A(t+1)βˆ’A(t)=βˆ’(1βˆ’mk)[βˆ’(1βˆ’mn)]t(A(0)βˆ’B(0)),B(t+1)βˆ’B(t)=βˆ’(1βˆ’m(nβˆ’k))[βˆ’(1βˆ’mn)]t(A(0)βˆ’B(0)),∴Di=A(0)βˆ’B(0)nmβ‹…{1βˆ’mki∈{1,…,k}1βˆ’m(nβˆ’k)i∈{k+1,…,n}. \begin{aligned} A⁽ᡗ⁺¹⁾-A⁽ᡗ⁾ &= -(1-mk)[-(1-mn)]α΅—(A⁽⁰⁾-B⁽⁰⁾), \\ B⁽ᡗ⁺¹⁾-B⁽ᡗ⁾ &= -(1-m(n-k))[-(1-mn)]α΅—(A⁽⁰⁾-B⁽⁰⁾), \\ ∴\qquad Dα΅’ &= \frac {A⁽⁰⁾-B⁽⁰⁾} {nm} β‹… \begin{cases} 1-mk & i∈\{1,…,k\} \\ 1-m(n-k) & i∈\{k+1,…,n\} \end{cases}. \end{aligned}

If k∈{1,nβˆ’1}k∈\{1,n-1\} we recover the star graph, resulting in maximum β€œworst-case” total convergence distance. Conversely worst-case convergence distance is minimized when kβ‰ˆn/2kβ‰ˆn/2.

It should be noted that in the small mm limit, Di∼1/(nm)Dᡒ∼1/(nm), which is same as the upper bound. That is, this graph asymptotically attains the upper bound as well.