Skip to content

complete w/o self-edges

Assume we have a directed weighted network on nn nodes that is complete (not necessarily including self-loops). That is, if iji≠j then 𝑻ij0𝑻ᵢⱼ≠0.

definition

Let m>0m>0 be the minimum off-diagonal entry. Also define U,LU,L as before.

claimconvergence distance bound
D1(n2)m(U(0)L(0)). D ≤ \frac 1 {(n-2)m} (U⁽⁰⁾-L⁽⁰⁾).
proof

Let u,lu,l be the indices of nodes that respectively attain maximum/minimum values at time t+1t+1. Then

U=xu=j=1ntujxj=U+j=1ntuj(xjU)=U+tuu0(xjU)0+jutujm(xjU)0U+mju(xjU),L=xlL+mjl(xjL),UL(UL)+m[ju(xjU)jl(xjL)](UL)+mju,l[(xjU)(xjL)]=[1(n2)m](UL).\begin{aligned} U' = xᵤ' &= ∑ⱼ₌₁ⁿ tᵤⱼ xⱼ \\ &= U + ∑ⱼ₌₁ⁿ tᵤⱼ (xⱼ-U) \\ &= U + \underbrace{tᵤᵤ}_{≥0} \underbrace{(xⱼ-U)}_{≤0} + ∑_{j≠u} \underbrace{tᵤⱼ}_{≥m} \underbrace{(xⱼ-U)}_{≤0} \\ &≤ U + m ∑_{j≠u} (xⱼ-U), \\ L' = xₗ' &≥ L + m ∑_{j≠l} (xⱼ-L), \\ U'-L' &≤ (U-L) + m \left[∑_{j≠u} (xⱼ-U) - ∑_{j≠l} (xⱼ-L)\right] \\ &≤ (U-L) + m ∑_{j≠u,l} [(xⱼ-U)-(xⱼ-L)] \\ &= [1-(n-2)m] (U-L). \end{aligned}

Next observe that in each step x,x[L,U]x',x∈[L,U], so xxULx'-x≤U-L. So then by the geometric series formula

Dt=0[1(n2)m]t(U(0)L(0))=1(n2)m(U(0)L(0)). D ≤ ∑ₜ₌₀^∞ [1-(n-2)m]ᵗ (U⁽⁰⁾-L⁽⁰⁾) = \frac 1 {(n-2)m} (U⁽⁰⁾-L⁽⁰⁾).

This bound is also tight. Consider

T=[01(n2)m0mm1(n2)mm0m1(n2)mmm0] T = \begin{bmatrix} 0 & * & * & ⋯ & * \\ 1-(n-2)m & 0 & m & ⋯ & m \\ 1-(n-2)m & m & 0 & ⋯ & m \\ ⋮ & ⋮ & ⋮ & ⋱ & ⋮ \\ 1-(n-2)m & m & m & ⋱ & 0 \end{bmatrix}

(the * entries can be set to non-negative values summing to 11), with initial state [1,0,,0][1,0,…,0].

As in the previous proof (with self-edges), observe by induction that x2==xnx₂=⋯=xₙ and so let Ax1A≔x₁ and Bx2==xnB≔x₂=⋯=xₙ, and we have

A=B,B=[1(n2)m]A+(n2)mB,AB=[1(n2)m](AB),AA=BA,\begin{aligned} A' &= B, \\ B' &= [1-(n-2)m]A + (n-2)mB, \\ A'-B' &= -[1-(n-2)m](A-B), \\ A'-A &= B-A, \end{aligned}

and so

D=t=0A(t+1)A(t)=t=0[1(n2)m]tA(0)B(0)=11(n2)mA(0)B(0).\begin{aligned} D &= ∑ₜ₌₀^∞ \lvert A⁽ᵗ⁺¹⁾-A⁽ᵗ⁾\rvert \\ &= ∑ₜ₌₀^∞ [1-(n-2)m]ᵗ \lvert A⁽⁰⁾-B⁽⁰⁾\rvert \\ &= \frac 1 {1-(n-2)m} \lvert A⁽⁰⁾-B⁽⁰⁾\rvert. \end{aligned}