Spring 2025, Math 223D, Homework 1. Recommended due date: Apr 21.

Problem 1. Prove that the normalized Hamming metric on $\mathcal C$ is complete.

Problem 2. Let S_{∞} be the group of all permutations of \mathbb{N} , i.e., all bijections $\mathbb{N} \to \mathbb{N}$. View S_{∞} as a subset of $\mathbb{N} = \mathbb{N}^{\mathbb{N}}$ and endow it with the subspace topology. Show that S_{∞} is a Polish space.

Problem 3. Let X be a standard Borel space and let $f: X \to X$ be a Borel function. Show that there is a compatible Polish topology τ on X such that $f: (X, \tau) \to (X, \tau)$ is continuous.

Problem 4. Let X be a standard Borel space and let τ be some Polish topology on X such that every τ -open set is Borel. Show that τ is compatible (i.e., $\mathbf{B}(X)$ is the Borel σ -algebra of (X, τ)).

Problem 5. Show that the set

```
Graphlso := \{(G, H) \in \text{Graphs} \times \text{Graphs} : G \text{ and } H \text{ are isomorphic}\}\
```

is analytic. (Here Graphs is the space of all graphs with vertex set \mathbb{N} .)

Problem 6. Given a directed graph $D \in \text{Dir}$, define a corresponding undirected graph F_D as follows. The vertex set of F_D is $\mathbb{N}^* \setminus \{\emptyset\}$, i.e., the set of all nonempty finite sequences of natural numbers. We put an (undirected) edge in F_D between sequences $v = (v_1, \dots, v_k)$ and $u = (u_1, \dots, u_\ell)$, where $k \leq \ell$, if and only if $\ell = k + 1$, $u_i = v_i$ for all $1 \leq i \leq k$, and $(u_\ell, v_k) \in E(D)$.

- (i) Prove that the graph F_D is acyclic, i.e., a forest.
- (ii) Show that F_D contains an infinite path if and only if D is not well-founded.

Conclude that the sets

```
\mathsf{Path}_{\infty} := \{ G \in \mathsf{Graphs} : G \text{ contains an infinite path} \}; \mathsf{ForestPath}_{\infty} := \{ F \in \mathsf{Graphs} : F \text{ is a forest with an infinite path} \}
```

are complete analytic, hence not Borel.

Problem 7. Prove that the sets

```
\mathsf{TreePath}_{\infty} := \{ T \in \mathsf{Graphs} : T \text{ is a tree with an infinite path} \};

\mathsf{Clique}_{\infty} := \{ G \in \mathsf{Graphs} : G \text{ has an infinite clique} \}
```

are complete analytic, hence not Borel.

Problem 8. Recall that a graph G is called *locally finite* if every vertex of G has finitely many neighbors. Show that the set of all locally finite graphs with an infinite path is Borel.

Problem 9. Let C be a Boolean pseudo-circuit in which negations are only applied at the inputs (meaning that for every not-gate v, the unique in-neighbor of v is an input node). Show that C admits at least one evaluation on every input (but possibly more than one if C is not well-founded).

Problem 10. In this problem we use the assignment of Boolean pseudo-circuits C_x to the points $x \in \mathcal{C}$ of the Cantor space discussed in class. Recall that the pseudo-circuits C_x for $x \in \mathcal{C}$ have the same countable vertex set, which we denote by V, and the same output node, which we denote by out. Let Z_{\forall} be the set of all points $x \in \mathcal{C}$ such that:

```
for every evaluation eval: V \to \{0,1\} of C_x on the input x, eval(out) = 0.
```

Also, let U_{\forall} be the set of all $x \in \mathcal{C}$ such that:

```
for every evaluation eval: V \to \{0,1\} of C_x on the input x, eval(out) = 1.
```

Prove that Z_{\forall} and U_{\forall} are disjoint co-analytic subsets of \mathcal{C} that cannot be separated by a Borel set, i.e., there is no partition $\mathcal{C} = B_0 \sqcup B_1$ of \mathcal{C} into two Borel sets such that $Z_{\forall} \subseteq B_0$ and $U_{\forall} \subseteq B_1$.

Hint. To prove that Z_{\forall} and U_{\forall} are disjoint, you will need to use Problem 9.